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STATIC STABILITY AND CONTROL CHARACTERISTICS
OF A PROPOSED WINGED REENTRY VEHICLE AT
MACH NUMBERS OF 1.50, 2.96, AND 4.63*

By James D. Reed and David S. Shaw
SUMMARY

An investigation has been conducted in the Langley Unitary Plan
wind tunnel to determine the static longitudinal and lateral stability
and control characteristics of a proposed winged reentry vehicle at
supersonic speeds. Effects of nose cant, elevon size, elevon deflec-
tion, and deflection of a single rudder were observed. Tests were con-
ducted at angles of attack from approximately -5° to 25° for a Mach
number of 1.50 and at -5° to >50° for Mach numbers of 2.96 and 4.63.
Angle of sideslip was varied from approximately -4° t0 10° at Mach num-
bers of 2.96 and 4.63, and Reynolds number per foot varied from

1.78 x 10® to 3.09 x 10°.

The results indicate that, for the selected center-of-gravity
location of 70 percent theoretical root chord, there is a longitudinal
trim problem in the desired angle-of-attack range between that for maxi-
mum lift-drag ratio and maximum 1lift. Also, there are large Mach num-
ber effects on the pltching-moment characteristics of the vehicle; thus,
the shape of the pitching-moment curves changes markedly between Mach
numbers of 1.50 and 2.96. Elevon effectiveness and longitudinal sta-
bility both decrease with upward elevon deflection at the two higher
Mach numbers.

Lateral stability appears to be satisfactory at all angles of
attack above about 10°. Deflection of the right rudder gives adequate
control at lower angles of attack, but effectiveness falls off rapidly
with increase in angle of attack up to that corresponding to maximum
1ift (angle of attack = 50°). Differential elevon roll control intro-
duces yawing moments which may be difficult to trim out at higher angles
of attack because of the fall off in rudder effectiveness.
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INTRODUCTION

At the present time there is intense interest in placing man into
space and assuring his safe return. The two main categories of vehi-
cles under consideration for such a task are the ballistic (lift-drag
ratio of O) and the lifting type (lift-drag ratio greater than 0). The
major development effort up to this time has been directed toward use
of the ballistic-type vehicle. While this type of configuration is well
suited for reentry, one of its disadvantages is the restriction of
landing-site selection to points along or near its trajectory. The
winged vehicles, on the other hand, allow reduction of the gravity
forces associated with reentry and afford a much wider choice of
landing sites, their range being dependent to a large degree on the
lift-drag ratio of ,the configuration.

The National Aeronautics and Space Administration has made a num-
ber of exploratory studies on winged reentry aircraft, both theoretical
and experimental. (See refs. 1 to 15.) The vehicle for which results
are presented herein is one such configuration, which was designed to
have a trimmed lift-drag ratio of between 2.0 and 3.0 at supersonic and
hypersonic speeds. The design geometry of this aircraft was based
primarily on reentry heating considerations.

One of the major problems involved in a configuration of this type
is the need for satisfactory stability and control over a wide velocity
spectrum from hypersonic to subsonic speeds. The purpose of this paper
is to determine the stability and control characteristlics of the con-
figuiation in the supersonic speed range, Mach numbers of 1.50, 2.96,
and 4.63.
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The tests were performed in the Langley Unitary DL

L Wi
at angles of attack from approximately -5° to 25° at a Mach number of
1.50, and at -5° to >50° at Mach numbers of 2.96 and 4.63. Tests were
also performed through an angle-of-sideslip range from approximately
-4% to0 10° at Mach numbers of 2.96 and 4.63, and Reynolds number per

foot varied from 1.78 x 10° to 3.09 x 10°.
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SYMBOLS

The aerodynamic force and moment data are referred to the axes
gystem shown in figure 1, with the center of gravity located at TO per-
cent of the theoretical root chord, measured from the theoretical apex
to the body base. (See fig. 2.) The coefficients are based on the
wing area (including elevons) of the particular confjguration being
tested. (See table I.) The symbols are defined as follows:



b wing span, in.

Cp axial-force coefficient, Aziélgzgzsg
a
Ca,c chamber axial-force coefficient, CR2Per a:ial force
q
C drag coefficient, Drag
D as
CZ rolling-moment coefficient, Rolling moment
ashb
Cl rolling moment due to sideslip (positive dihedral effect if
B sign is negative)
cr, 1ift coefficient, Lift
as
Cn pitching-moment coefficient, Pltching moment
gScy
Cm,o pitching-moment coefficient at zero normal force
ACm/se elevon effectiveness parameter
Cn yawing-moment coefficient, Yawingsgoment
a
CnB yawling moment due to sideslip
Cy normal-force coefficient, Normalsforce
g
Cy wing root chord (from theoretical apex to base of body)
Cy side-force coefficient, S9ide force

gs

CYB side force due to sideslip



Pt stagnation pressure, 1b/sq ft

L/D lift-drag ratio, Cr,/Cp

M Mach number l

q free-stream dynamic pressure, 1b/sq ft

R Reynolds number per foot

S wing area (including area of elevons), sq ft

Ty stagnation temperature, °F

@ angle of attack, deg

B angle of sideslip, deg

Se elevon deflection angle (positive for trailing edge down), deg

S nose deflection angle (positive for nose up), deg

o right rudder deflection angle (positive for trailing edge
left), deg

Subscript:

max maximum

Model Component Designations:

B body
W wing
E, large elevons
Ey, small elevons

F fins



APPARATUS AND TESTS

Tunnel

Tests were conducted in both the low and high Mach number test sec-
tions of the Langley Unitary Plan wind tunnel, which 1s a variable-
pressure continuous flow tunnel. The nozzle leading to each test section
is of the asymmetric sliding-block type, which permits a continuous vari-
ation in test-section Mach number from about 1.5 to 2.9 in the low Mach
number test section, and from sbout 2.3 to 4.7 in the high Mach number
test section.

Model

A three-view drawing of the model is shown in figure 2, and certain
dimensional details are given in table I. Model photographs are pre-
sented in figure 3. The model wing was of clipped-delta planform, with
75° of leading-edge sweep. The bottom surface of the wing was essen-
tially a flat plate except when the nose was canted. Interchangeable
noses gere constructed for the model to give nose cant angles of 0°, 5°,
and 10™~.

Two sizes of elevons were tested (shown in fig. 2) and, for each
set, elevon angle was varied remotely by means of a motor-driven gearing
system housed within the model. ZEach elevon was capable of independent
movement. A calibrated slide wire system was used to obtain the desired
elevon-angle settings. Vertical fins were mounted at the wing tips and
toed in 5°. Rudder deflection angles of -50, -150, and -250 were
obtained by means of wedge blocks fitted to the outboard surface of the
right vertical fin. (See fig. 2.)

Reference will be made throughout the report to a "basic configu-
ration." This consists of the 5° nose, body and wing, vertical fins,
and either designated set of elevons.

Test Conditions

The following table presents the conditions under which the tests
were performed:

Py o q,

M 1b/sq £t R Ty, °F 1b/sq £t
1.50 932 1.78 x 100 125 400
2.96 2,030 1.88 150 360
4.63 8,163 3.09 175 360




Transition strips of sparsely seeded No. 60 carborundum grit were
placed at approximately the 5-percent-chord line of all airfoil sections
and around the nose 1 inch behind the tip. Dewpolnt was maintained
below —500 F to minimize condensation effects.

Measurements and Methods

Aerodynamic forces and moments on the model were measured by means
of an internal, six-component, electrlical strain-gage balance. The
balance was attached to a sting which, in turn, was rigidly fastened to
the sting support system. Two sting arrangements were used in order to
obtain the desired elevon-angle range (20° to -50°) and model angle-of-
attack range. (See fig. 4.) In addition, a 0° straight sting was used
to obtain comparison data for the undeflected and downward deflected
elevons. By use of the 15° offset sting, elevon deflection angles to
-15° were obtained at model angles of attack to about 25°. The top-
mounted sting was necessary in order to extend the angle-of-attack and
elevon-angle ranges to the maximum values for this test program. A por-
tion of the upper surface of the elevons was removed to allow clearance
for the rear-mounted stings. (See figs. 2 and 4.)

Balance chamber pressure was measured by means of a single static
orifice located in the model. This pressure was only measured for the
rear-mounted sting conditions, and figure 5 illustrates representative
values of Cp c- Schlieren photographs of the model were taken and
selected views are presented in figure 6.

Corrections

Corrections to the indicated model angle of attack have been made
for both tunnel airflow misalinement and deflection of model and sting
support due to aercdynamic load. The data are uncorrected for Cp .-

RESULTS AND DISCUSSION

Sting Interference

A comparison of the longitudinal data for the three different
sting mounting systems is presented in figure 7 for Mach numbers of
2.96 and 4.63. (At a Mach number of 1.50, only the 15° offset sting
was used.) The data for the two rear-mounted stings are generally the
same at both Mach numbers tested. Although there is no overlap in
angle of attack of the top-mounted-sting data with that of the rear-
mounted stings, it is noted that there is a slight offset in the curves.
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This is probably due to a change in the flow field on the top of the
model as a result of the position of the top-mounted sting. The slopes
of the curves appear to be the same on both sides of the discontinuity,
however, and it is believed that any lncremental or slope information
derived from these curves is valid.

Longitudinal Stability and Control Characteristics

The longitudinal aerodynamic characteristics of the basic config-
uration with both large and small elevons are presented in figures 8
and 9, respectively. The reference center-of-gravity location of 0.70cy
was dictated by hypersonic considerations and is not necessarily the
optimum location for the entire veloclty spectrum.

A change in Mach number from 1.50 to 2.96 or 4.63 results in marked
changes in the shape of the pitching-moment curves. At M =1.50 the
vehicle is stable in the lower range of Cp, but exhibits pitch-up at
higher values of Cy. Conversely, at M = 2.96 and 4.63 (% = 0°) the
trend 1s from low stability or unstable conditions in the lower range
of Cy to higher stability at increased Cy-.

At M = 1.50, elevon deflection appears to have very little effect
on vehicle stability over the limited angle-of-attack and elevon-
deflection ranges of the tests. However, at M = 2.96 and 4.63, upward
elevon deflection results in marked decreases in vehicle stability over
the test angle-of-attack range, because of the decreased wing loading
behind the center of gravity. As would be expected, the configuration
with small elevons is more unstable than that with the large elevons.

Elevon control effectiveness decreases rather rapidly with upward
elevon deflection. (See fig. 10.) In general, for any given elevon
deflection angle, elevon effectiveness increases wilth angle of attack
at the two higher test Mach numbers.

One of the prime prerequisites for a vehicle of this type is that
it be capable of stable trim over its entire wvelocity spectrum at angles
of attack from those corresponding to (L/D)max up to those for maximum

1ift. In order to show more clearly the trim characteristics of the
aircraft, figure 11 presents Cp plotted against Cy for the

BWE F configuration. Data from the results obtained at each of the
test Mach numbers are plotted for several elevon deflections. In addi-
tion, limited data from unpublished test results in the Langley ll-inch
hypersonic tunnel at Mach numbers of 6.8 and 9.6 are included. Lines
connecting the values of Cy at which (L/D)pax and CL,max occur

are superimposed on the figure.



Hypersonically, it appears that the vehicle can trim with positive
stability over the range from (L/D)pgax t0 Cp,max (o= 50°). sStable
trim at Mach numbers 6.8 and 9.6 with 8 = 0° is near (L/D)paxs
showing ability to trim at or slightly below this value. Data at
M =9.6 for B = -10° are limited to a range below Cy = 0.%; how-
ever, extrapolation over the higher range of Cy, similar in shape to

the supersonic curves presented, indicates that the vehicle can possibly
accomplish stable trim to Cp, max at this Mach number.

The supersonic data, on the other hand, leave much to be desired
from a trim standpoint. The trend of the data indicates that the vehicle
can accomplish stable trim at M = 1.50 only below Cy = O. Lo. This
should allow trim to (L/D)max but not far above that point. Conversely,
at Mach numbers of 2.96 and h.63, the configuration may attain stable
trim at moderate values of Cy and values of Cy near maximum 1ift
(see B = -10°) but not in the region near (L/D)max or below, because
of a combination of negative Cm,o and the nonlinearity of the pitching-

moment curves. For example, at M = 4.63, it appears that stable trim
conditions cannot be obtained below Cy =~ 0.25 (& = -5°) and, at

M = 2.96, stable trim cannot be obtained below Cy =~ 0.60 (8 = -10°).

Thus, it appears that there is a trim problem in the supersonic
speed regime that does not exist hypersonically. The solution to this
problem lles in a corrective device, for supersonic use, that would both
increase Cp,o and increase the stability and linearity of the pitching-

moment curves.
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characteristics of the vehicle are presented in figure 12. As would be

expected, increased nose cant angle produces a positive shift in Cm,o
with only minor changes in vehicle stability. While increased nose
cant angle will help the problem of negative Cp,o, it will not give
needed increase in vehicle stability. There is the further drawback of

increased heating during the reentry portion of flight, which would dis-
courage use of higher nose cant angles.

Performance Characteristics

The maximum lift-drag ratio for the basic configuration with either
the large or the small elevons appears to be only slightly affected by
variation in Mach number over the test range. (See fig. 13.) The
vehicle with large elevons at 0° has slightly higher values of (L/D)max

than does the one with the small elevons. DNegative deflection of the



elevons to -15° has little or no effect on (L/D)max of the vehicle;

however, positive elevon deflections lead to significant losses in
(L/D)max (about 0.7 for a 20° positive deflection of the large elevons).

There was little effect of nose cant up to 10° on the maximum lift-drag
ratio of the vehicle at any of the test Mach numbers as shown in
figure 1k.

Lateral Stability and Control Characteristics

The lateral stability and control characteristics of the BWE;F con-

figuration are presented in figures 15 and 16 and summarized in fig-
ures 17 and 18 for Mach numbers of 2.96 and 4.63. At a Mach number of
2.96, the model exhibited positive dihedral effect at all test angles
of attack above about 10° (fig. 17). The angle of attack for positive
dihedral effect was lowered slightly with increase in Mach number to
4.63. There was a small effect of single rudder deflection to —250

on CZB of the model. Removal of both vertical fins reduced positive

dihedral effect somewhat.

The configuration with undeflected rudder exhibits positive direc-
tional stability over all but the lower angle-of-attack range (o < 10°).
Increased deflection of the right rudder increased the directional sta-
bility. Removal of the vertical fins leads to directional instability
at all test angles of attack.

The control effectiveness of deflecting a single rudder (right) is
sumarized in figure 18 for Mach numbers of 2.96 and 4.63. There is a
rapid fall off in rudder effectiveness with increasing angle of attack,
suggesting a control problem at the higher angles of attack near maximum
1lift (a = 50°). There appears to be no significant Mach number effect
on rudder control in this speed regime.

The ability of the elevons to produce roll control is presented in
figure 19(a) for both sizes of elevons. The effectiveness appears to
be directly proportional to the size of the elevons and the deflection
angle, up to differential elevon deflections of *#10°. The interaction
of roll control on vehicle yawing moment can be seen in figure 19(b).
There 1s an adverse yawing moment introduced which will be difficult to
trim out at the higher angles of attack, because of the reduced rudder
effectiveness previously mentioned.

The effect of nose cant on the lateral stability characteristics
of the configuration is presented in figures 20 and 21 and summarized
in figure 22. Other than an increase in positive dihedral effect with
increased nose cant, there is little effect of nose cant on the vehicle
lateral characteristics.
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CONCLUDING REMARKS

An investigation has been conducted in the Langley Unitary Plan
wind tunnel to determine the static longitudinal and lateral stability
and control characteristics of a proposed winged reentry vehicle at
supersonic speeds. The results indicate that, for the selected center-
of-gravity location of TO percent theoretical root chord, there is a
longitudinal trim problem in the desired angle-cof-attack range between
that for maximum l1ift-drag ratio and maximum 1lift. Also, there are
large Mach number effects on the pitching-moment characteristics of the
vehicle; thus, the shape of the pitching-moment curves changes markedly
between Mach numbers of 1.50 and 2.96. Elevon effectiveness and longi-
tudinal stability both decrease with upward elevon deflection at the
two higher Mach numbers.

Lateral stabllity appears to be satisfactory at all angles of attack
above about 10°. Deflection of the right rudder gives adequate control
at lower angles of attack, but effectiveness falls off rapidly with
increase in angle of attack up to that corresponding to maximum 1lift
(angle of attack = 500). Differential elevon roll control introduces
yawing moments which may be difficult to trim out at higher angles of
attack because of the fall off in rudder effectiveness.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., February 2, 1962.
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TABLE I.- MODEL DIMENSIONAL CHARACTERISTICS

13

BWE; BWE;F BWEL,F
Wing area, sq ft 0.90618 0.90618 0.82715
Nose area, sq ft 0.14555 0.14555 0.14555
Elevon area
(plan, both), sq ft . 0.15792 0.15792 0.07896
Vertical fin area
(plan, both), sq ft . . | —-mee-- 0.23561 0.23561
Rudder area
(plan, one), sq ft . . | —cmm-ea 0.04708 0.04708
cp, in. o . ... L 20.2k46 20.246 20.246
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L-62-30
(a) Basic BWE1F configuration with 15° offset sting at

M= 1.50. %e = 0° &y = 0°.

Figure 6.- Selected schlieren photographs. -
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(b) Basic BWE,F configuration with 0° straight sting
at M =L4.63. Be = 0°; &, = 0°.

Figure 6.- Continued.

L-62-31
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2k CONETDENTT A%,

M=2.96 M=4.63

a = 45.5° a =45.6°

(c) Basic BWE;F configuration with high angle sting L-62-32
at M =2.96 and M = %.63. B, = 0°; B, = 0°.

Figure 6.- Concluded.
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(b)

PO .

o 0° T i
o 15° 0 ; :
o high « i

.5 .6
¢

Cm and o against Cy for the basic BWEF configuration
at M =Lk.63. &, =0°

Figure T.- Continued.
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Figure 20.- Effect of nose cant on the lateral stability characteristics
of the BWEF configuration at M = 2.96.
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Figure 21.- Continued.
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